Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176045

RESUMO

Envenomation by venomous fish, although not always fatal, is capable of causing damage to homeostasis by activating the inflammatory process, with the formation of edema, excruciating pain, necrosis that is difficult to heal, as well as hemodynamic and cardiorespiratory changes. Despite the wide variety of pharmacological treatments used to manage acute symptoms, none are effective in controlling envenomation. Knowing the essential role of neutralizing polyclonal antibodies in the treatment of envenoming for other species, such as snakes, this work aimed to produce a polyclonal antiserum in mice and test its ability to neutralize the main toxic effects induced by the venoms of the main venomous Brazilian fish. We found that the antiserum recognizes the main toxins present in the different venoms of Thalassophryne nattereri, Scorpaena plumieri, Potamotrygon gr. Orbignyi, and Cathorops spixii and was effective in pre-incubation trials. In an independent test, the antiserum applied immediately to the topical application of T. nattereri, P. gr orbygnyi, and C. spixii venoms completely abolished the toxic effects on the microcirculation, preventing alterations such as arteriolar contraction, slowing of blood flow in postcapillary venules, venular stasis, myofibrillar hypercontraction, and increased leukocyte rolling and adherence. The edematogenic and nociceptive activities induced by these venoms were also neutralized by the immediate application of the antiserum. Importantly, the antiserum prevented the acute inflammatory response in the lungs induced by the S. plumieri venom. The success of antiserum containing neutralizing polyclonal antibodies in controlling the toxic effects induced by different venoms offers a new strategy for the treatment of fish envenomation in Brazil.


Assuntos
Batracoidiformes , Peixes-Gato , Venenos de Peixe , Perciformes , Camundongos , Animais , Venenos de Peixe/toxicidade , Soros Imunes
2.
Int J Mol Sci, v. 24, n. 9, 8338, mai. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4907

RESUMO

Envenomation by venomous fish, although not always fatal, is capable of causing damage to homeostasis by activating the inflammatory process, with the formation of edema, excruciating pain, necrosis that is difficult to heal, as well as hemodynamic and cardiorespiratory changes. Despite the wide variety of pharmacological treatments used to manage acute symptoms, none are effective in controlling envenomation. Knowing the essential role of neutralizing polyclonal antibodies in the treatment of envenoming for other species, such as snakes, this work aimed to produce a polyclonal antiserum in mice and test its ability to neutralize the main toxic effects induced by the venoms of the main venomous Brazilian fish. We found that the antiserum recognizes the main toxins present in the different venoms of Thalassophryne nattereri, Scorpaena plumieri, Potamotrygon gr. Orbignyi, and Cathorops spixii and was effective in pre-incubation trials. In an independent test, the antiserum applied immediately to the topical application of T. nattereri, P. gr orbygnyi, and C. spixii venoms completely abolished the toxic effects on the microcirculation, preventing alterations such as arteriolar contraction, slowing of blood flow in postcapillary venules, venular stasis, myofibrillar hypercontraction, and increased leukocyte rolling and adherence. The edematogenic and nociceptive activities induced by these venoms were also neutralized by the immediate application of the antiserum. Importantly, the antiserum prevented the acute inflammatory response in the lungs induced by the S. plumieri venom. The success of antiserum containing neutralizing polyclonal antibodies in controlling the toxic effects induced by different venoms offers a new strategy for the treatment of fish envenomation in Brazil.

3.
An Acad Bras Ciênc, v. 94, n.4, e20200976, mar. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4464

RESUMO

The scorpionfish Scorpaena plumieri is one of the most venomous fish species in the Brazilian coast. Amongst many biological activities, the S. plumieri fish venom (SpV) promotes hemagglutination. Although this activity appears to be associated to the presence of C-type lectins in the venom, it has not yet been chemically or functionally characterized. In the present work we sought to advance the characterization of the hemagglutinating activity associated to this venom. By fractionating SpV through saline precipitation followed by size exclusion chromatography we obtained two purified fractions - HF1 and HF3 - with Ca2+-dependent agglutinating activity against rabbit erythrocytes, which remained stable upon storage at 4 and -80oC. HF1 and HF3 were bacteriostatic against Gram-positive bacteria (Staphylococcus aureus), displaying minimum inhibitory concentration (MIC) of 50 and 200 μg/mL, respectively. In addition, a resazurin-based viability assay revealed that both fractions, at doses up to 370 μg/mL, were cytotoxic against tumor and non-tumor cell lines. Finally, a tendency towards edema formation could be detected when the fractions - particularly HF1 - were injected into mice footpads. We believe our data contribute to a better understanding of the biological properties of the so often neglected fish venoms.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30181739

RESUMO

BACKGROUND: Lethal factors are multifunctional oligomeric proteins found in the venomous apparatus of Scorpaeniformes fish. These toxins elicit not only an array of biological responses in vitro but also cardiovascular disorders and strong hemolytic, nociceptive and edematogenic activities in vivo. This work describes the cloning and molecular identification of two toxin subunits, denominated Sp-CTx-α and Sp-CTx-ß, from scorpionfish venom (Scorpaena plumieri). METHODS: The primary structures were deduced after cDNA amplification by PCR with primers from conserved sequences described in Scorpaeniformes toxins. Following DNA sequencing and bioinformatic analysis, the tridimensional structures of both subunits were modeled. RESULTS: The translated sequences (702 amino acids, each subunit) show homology with other lethal factors, while alignment between Sp-CTx-α and Sp-CTx-ß shows 54% identity. The subunits lack N-terminal signal sequences and display masses of approximately 80 kDa each. Both Sp-CTx subunits display a B30.2/SPRY domain at the C-terminal region with typically conserved motifs as described in these toxins. Secondary structure prediction identified six α-helices 18 residues long in both α and ß subunits, some of them amphiphilic with their N-terminal flanked by many basic residues, creating a cationic site associated with the cytolytic activity of these toxins. Antimicrobial potential sites were identified in Sp-CTx and share some features with other peptides presenting variable and broad-spectrum activity. A phylogenetic tree built to represent these toxins supports the proximity between scorpionfish, lionfish and stonefish. CONCLUSION: The study identified a putative toxin protein whose primary structure is similar to other fish toxins and with potential for production of antivenom against scorpionfish envenomation in Brazil. As a prelude to structure-function studies, we propose that the toxin is structurally related to pore-forming marine toxins.

5.
J Proteomics ; 187: 200-211, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30098406

RESUMO

The biological activities observed upon envenomation by Scorpaena plumieri could be linked to both the venom and the skin mucus. Through a proteomic/functional approach we analyzed protein composition and biological activities of the venom and skin mucus. We identified 885 proteins: 722 in the Venomous Apparatus extracts (Sp-VAe) and 391 in the Skin Mucus extract (Sp-SMe), with 494 found exclusively in Sp-VAe, being named S. plumieri Venom Proteins (Sp-VP), while 228 were found in both extracts. The majority of the many proteins identified were not directly related to the biological activities reported here. Nevertheless, some were classified as toxins/potentially interesting molecules: lectins, proteases and protease inhibitors were detected in both extracts, while the pore-forming toxin and hyaluronidase were associated with Sp-VP. Proteolytic and anti-microbial activities were linked to both extracts, while the main toxic activities - cardiovascular, inflammatory, hemolytic and nociceptive - were elicited only by Sp-VAe. Our study provided a clear picture on the composition of the skin mucus and the venom. We also show that the classic effects observed upon envenomation are produced by molecules from the venomous gland. Our results add to the growing catalogue of scorpaeniform fish venoms and their skin mucus proteins. SIGNIFICANCE: In this study a large number of proteins - including classical and non-classical toxins - were identified in the venomous apparatus and the skin mucus extracts of the Scorpaena plumieri fish through shotgun proteomic approach. It was shown that the toxic effects observed upon envenomation are elicited by molecules originated from the venomous gland. These results add to the growing catalogue of scorpaeniform fish venoms and their skin mucus proteins - so scarcely explored when compared to the venoms and bioactive components of terrestrial animals. Data are available via ProteomeXchange with identifier PXD009983.


Assuntos
Proteínas de Peixes/análise , Proteínas de Peixes/fisiologia , Venenos de Peixe/análise , Muco/química , Perciformes/metabolismo , Proteômica/métodos , Pele/química , Animais , Proteínas de Peixes/metabolismo , Venenos de Peixe/metabolismo , Venenos de Peixe/fisiologia , Masculino , Camundongos , Muco/metabolismo , Ratos , Ratos Wistar , Pele/metabolismo , Extratos de Tecidos/análise , Extratos de Tecidos/metabolismo
6.
Toxicon ; 150: 220-227, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29902539

RESUMO

Proteins that account for the hemolytic activity found in scorpaeniform fish venoms are responsible for the majority of the effects observed upon envenomation, for instance, neurotoxic, cardiotoxic and inflammatory effects. These multifunctional toxins, described as protein lethal factors and referred to as cytolysins, are known to be extremely labile molecules. In the present work, we endeavored to overcome this constraint by determining optimal storage conditions for Sp-CTx, the major bioactive component from the scorpionfish Scorpaena plumieri venom. This cardiotoxic hemolytic cytolysin is a large dimeric glycoprotein (subunits of ≈65 kDa) with pore-forming ability. We were able to establish storage conditions that allowed us to keep the toxin partially active for up to 60 days. Stability was achieved by storing Sp-CTx at -80 and -196 °C in the presence of glycerol 10% in a pH 7.4 solution. It was demonstrated that the hemolytic activity of Sp-CTx is calcium dependent, being abolished by EDTA and zinc ions. Furthermore, the toxin exhibited its maximal hemolytic activity at pH between 8 and 9, displaying typical N- and O- linked glycoconjugated residues (galactose (1-4) N-acetylglucosamine and sialic acid (2-3) galactose in N- and/or O-glycan complexes). The hemolytic activity of Sp-CTx was inhibited by phosphatidylglycerol and phosphatidylethanolamine, suggesting a direct electrostatic interaction lipid - toxin in the pore-formation mechanism of action of this toxin. In addition, we observed that the hemolytic activity was inhibited by increasing doses of cholesterol. Finally, we were able to show, for first time, that Sp-CTx is at least partially responsible for the pain and inflammation observed upon envenomation. However, while the edema induced by Sp-CTx was reduced by pre-treatment with aprotinin and HOE-140, pointing to the involvement of the kallikrein-kinin system in this response, these drugs had no significant effect in the toxin-induced nociception. Taken together, our results could suggest that, as has been already reported for other fish cytolysins, Sp-CTx acts mostly through lipid-dependent pore formation not only in erythrocytes but also in other cell types, which could account for the pain observed upon envenomation. We believe that the present work paves the way towards the complete characterization of fish cytolysins.


Assuntos
Proteínas de Peixes/química , Venenos de Peixe/química , Perciformes/fisiologia , Animais , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Proteínas de Peixes/toxicidade , Venenos de Peixe/toxicidade , Hemólise , Concentração de Íons de Hidrogênio , Camundongos , Dor/induzido quimicamente , Medição da Dor , Manejo de Espécimes
7.
Artigo em Inglês | LILACS | ID: biblio-954851

RESUMO

Lethal factors are multifunctional oligomeric proteins found in the venomous apparatus of Scorpaeniformes fish. These toxins elicit not only an array of biological responses in vitro but also cardiovascular disorders and strong hemolytic, nociceptive and edematogenic activities in vivo. This work describes the cloning and molecular identification of two toxin subunits, denominated Sp-CTx-α and Sp-CTx-ß, from scorpionfish venom ( Scorpaena plumieri ). Methods: The primary structures were deduced after cDNA amplification by PCR with primers from conserved sequences described in Scorpaeniformes toxins. Following DNA sequencing and bioinformatic analysis, the tridimensional structures of both subunits were modeled. Results: The translated sequences (702 amino acids, each subunit) show homology with other lethal factors, while alignment between Sp-CTx-α and Sp-CTx-ß shows 54% identity. The subunits lack N-terminal signal sequences and display masses of approximately 80 kDa each. Both Sp-CTx subunits display a B30.2/SPRY domain at the C-terminal region with typically conserved motifs as described in these toxins. Secondary structure prediction identified six α-helices 18 residues long in both α and ß subunits, some of them amphiphilic with their N-terminal flanked by many basic residues, creating a cationic site associated with the cytolytic activity of these toxins. Antimicrobial potential sites were identified in Sp-CTx and share some features with other peptides presenting variable and broad-spectrum activity. A phylogenetic tree built to represent these toxins supports the proximity between scorpionfish, lionfish and stonefish. Conclusion: The study identified a putative toxin protein whose primary structure is similar to other fish toxins and with potential for production of antivenom against scorpionfish envenomation in Brazil. As a prelude to structure-function studies, we propose that the toxin is structurally related to pore-forming marine toxins.(AU)


Assuntos
Animais , DNA Complementar/análise , Venenos de Peixe/toxicidade , Peptídeos/análise , Antivenenos/classificação , Reação em Cadeia da Polimerase/métodos , Sequência de Aminoácidos
8.
J. venom. anim. toxins incl. trop. dis ; 24: 1-15, 2018. ilus, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484755

RESUMO

Background: Lethal factors are multifunctional oligomeric proteins found in the venomous apparatus of Scorpaeniformes fish. These toxins elicit not only an array of biological responses in vitro but also cardiovascular disorders and strong hemolytic, nociceptive and edematogenic activities in vivo. This work describes the cloning and molecular identification of two toxin subunits, denominated Sp-CTx- and Sp-CTx-, from scorpionfish venom ( Scorpaena plumieri ). Methods: The primary structures were deduced after cDNA amplification by PCR with primers from conserved sequences described in Scorpaeniformes toxins. Following DNA sequencing and bioinformatic analysis, the tridimensional structures of both subunits were modeled. Results: The translated sequences (702 amino acids, each subunit) show homology with other lethal factors, while alignment between Sp-CTx- and Sp-CTx- shows 54% identity. The subunits lack N-terminal signal sequences and display masses of approximately 80 kDa each. Both Sp-CTx subunits display a B30.2/SPRY domain at the C-terminal region with typically conserved motifs as described in these toxins. Secondary structure prediction identified six -helices 18 residues long in both and subunits, some of them amphiphilic with their N-terminal flanked by many basic residues, creating a cationic site associated with the cytolytic activity of these toxins. Antimicrobial potential sites were identified in Sp-CTx and share some features with other peptides presenting variable and broad-spectrum activity...


Assuntos
Animais , DNA Complementar/análise , Peixes Venenosos , Venenos de Peixe/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-28031733

RESUMO

The most poisonous fish species found along the Brazilian coast is the spotted scorpionfish Scorpaena plumieri. Though hardly ever life-threatening to humans, envenomation by S. plumieri can be quite hazardous, provoking extreme pain and imposing significant socioeconomic costs, as the victims may require days to weeks to recover from their injuries. In this review we will walk the reader through the biological features that distinguish this species as well as the current epidemiological knowledge related to the envenomation and its consequences. But above all, we will discuss the challenges involved in the biochemical characterization of the S. plumieri venom and its compounds, focusing then on the successful isolation and pharmacological analysis of some of the bioactive molecules responsible for the effects observed upon envenomation as well as on experimental models. Despite the achievement of considerable progress, much remains to be done, particularly in relation to the non-proteinaceous components of the venom. Therefore, further studies are necessary in order to provide a more complete picture of the venom's chemical composition and physiological effects. Given that fish venoms remain considerably less studied when compared to terrestrial venoms, the exploration of their full potential opens a myriad of possibilities for the development of new drug leads and tools for elucidating the complex physiological processes.

10.
Toxicon ; 119: 92-8, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27215174

RESUMO

The venom of marine animals is a rich source of compounds with remarkable selectivity and functional diversity. Scorpaena plumieri is the most venomous fish in the Brazilian fauna and is responsible for relatively frequent accidents involving anglers and bathers. In humans, its venom causes edema, erythema, ecchymoses, anxiety, nausea, vomiting, and syncope. The venom is chemically characterized by Sp-CTx, a enzyme able to generate an initial endothelium-dependent relaxation response, followed by a contraction response. This study sought to investigate the proteolytic activities regarding vasopeptides angiotensin I and II. Both the venom and the epidermal mucus presented angiotensin conversion activity for angiotensin I, as well as a capacity to form Ang 1-7 directly via Ang I and II. Captopril (10 µM) and EDTA (1 mM) were able to abolish the converting activity of the venom and the epidermal mucus, representing the first description of a converting activity in S. plumieri venom and epidermal mucus.


Assuntos
Angiotensinas/metabolismo , Epiderme/química , Venenos de Peixe/toxicidade , Muco/química , Animais , Cromatografia Líquida de Alta Pressão , Venenos de Peixe/química , Humanos
11.
Toxicon ; 118: 141-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27155562

RESUMO

Fish venom cytolysins are multifunctional proteins that in addition to their cytolytic/hemolytic effects display neurotoxic, cardiotoxic and inflammatory activities, being described as "protein lethal factors". A pore-forming cytolysin called Sp-CTx (Scorpaena plumieriCytolytic Toxin) has been recently purified from the venom of the scorpionfish Scorpaena plumieri. It is a glycoprotein with dimeric constitution, comprising subunits of approximately 65 kDa. Previous studies have revealed that this toxin has a vasorelaxant activity that appears to involve the L-arginine-nitric oxide synthase pathway; however its cardiovascular effects have not been fully comprehended. The present study examined the cardiovascular effects of Sp-CTx in vivo and in vitro. In anesthetized rats Sp-CTx (70 µg/kg i.v) produced a biphasic response which consisted of an initial systolic and diastolic pressure increase followed by a sustained decrease of these parameters and the heart rate. In isolated rats hearts Sp-CTx (10(-9) to 5 × 10(-6) M) produced concentration-dependent and transient ventricular positive inotropic effect and vasoconstriction response on coronary bed. In papillary muscle, Sp-CTx (10(-7) M) also produced an increase in contractile isometric force, which was attenuated by the catecholamine releasing agent tyramine (100 µM) and the ß-adrenergic antagonist propranolol (10 µM). On isolated ventricular cardiomyocytes Sp-CTx (1 nM) increased the L-type Ca(2+) current density. The results show that Sp-CTx induces disorders in the cardiovascular system through increase of sarcolemmal calcium influx, which in turn is partially caused by the release of endogenous noradrenaline.


Assuntos
Cardiotoxinas/toxicidade , Circulação Coronária/efeitos dos fármacos , Venenos de Peixe/química , Coração/efeitos dos fármacos , Músculos Papilares/efeitos dos fármacos , Perciformes , Perforina/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Brasil , Cardiotoxinas/administração & dosagem , Cardiotoxinas/isolamento & purificação , Células Cultivadas , Proteínas de Peixes/administração & dosagem , Proteínas de Peixes/isolamento & purificação , Proteínas de Peixes/toxicidade , Glicoproteínas/administração & dosagem , Glicoproteínas/isolamento & purificação , Glicoproteínas/toxicidade , Coração/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Técnicas In Vitro , Injeções Intravenosas , Masculino , Contração Muscular/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Músculos Papilares/fisiologia , Técnicas de Patch-Clamp , Perforina/administração & dosagem , Perforina/isolamento & purificação , Ratos Wistar , Vasoconstritores/administração & dosagem , Vasoconstritores/isolamento & purificação , Vasoconstritores/toxicidade
12.
J. venom. anim. toxins incl. trop. dis ; 22: [1-9], 2016. ilus, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484660

RESUMO

The most poisonous fish species found along the Brazilian coast is the spotted scorpionfish Scorpaena plumieri. Though hardly ever life-threatening to humans, envenomation by S. plumieri can be quite hazardous, provoking extreme pain and imposing significant socioeconomic costs, as the victims may require days to weeks to recover from their injuries. In this review we will walk the reader through the biological features that distinguish this species as well as the current epidemiological knowledge related to the envenomation and its consequences. But above all, we will discuss the challenges involved in the biochemical characterization of the S. plumieri venom and its compounds, focusing then on the successful isolation and pharmacological analysis of some of the bioactive molecules responsible for the effects observed upon envenomation as well as on experimental models. Despite the achievement of considerable progress, much remains to be done, particularly in relation to the non-proteinaceous components of the venom. Therefore, further studies are necessary in order to provide a more complete picture of the venoms chemical composition and physiological effects. Given that fish venoms remain considerably less studied when compared to terrestrial venoms, the exploration of their full potential opens a myriad of possibilities for the development of new drug leads and tools for elucidating the complex physiological processes.


Assuntos
Animais , Venenos de Peixe/análise , Venenos de Peixe/farmacologia , Venenos de Peixe/química , Venenos de Peixe/toxicidade , Sinergismo Farmacológico
13.
J. venom. anim. toxins incl. trop. dis ; 22: 35, 2016. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954804

RESUMO

The most poisonous fish species found along the Brazilian coast is the spotted scorpionfish Scorpaena plumieri. Though hardly ever life-threatening to humans, envenomation by S. plumieri can be quite hazardous, provoking extreme pain and imposing significant socioeconomic costs, as the victims may require days to weeks to recover from their injuries. In this review we will walk the reader through the biological features that distinguish this species as well as the current epidemiological knowledge related to the envenomation and its consequences. But above all, we will discuss the challenges involved in the biochemical characterization of the S. plumieri venom and its compounds, focusing then on the successful isolation and pharmacological analysis of some of the bioactive molecules responsible for the effects observed upon envenomation as well as on experimental models. Despite the achievement of considerable progress, much remains to be done, particularly in relation to the non-proteinaceous components of the venom. Therefore, further studies are necessary in order to provide a more complete picture of the venom's chemical composition and physiological effects. Given that fish venoms remain considerably less studied when compared to terrestrial venoms, the exploration of their full potential opens a myriad of possibilities for the development of new drug leads and tools for elucidating the complex physiological processes.(AU)


Assuntos
Animais , Peptídeo Hidrolases , Venenos de Peixe/toxicidade , Peixes , Inflamação
14.
Toxicon ; 95: 67-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576236

RESUMO

Chemical analyses of the hemagglutinating fraction from Scorpaena plumieri venom revealed that it contains five components (Sp-CL 1-5) with similar chromatographic elution profiles (35-38% of acetonitrile), molecular masses (16,800-17,000 Da) and N-terminal sequences, suggesting that they are isoforms of the same protein. The amino acid sequence of Sp-CL4 was determined and shown to have homology with fish C-type lectins. These data demonstrate for the first time the presence of C-type isolectins in a scorpionfish venom.


Assuntos
Venenos de Peixe/química , Lectinas/isolamento & purificação , Perciformes , Sequência de Aminoácidos , Animais , beta-Globulinas/química , beta-Globulinas/isolamento & purificação , Venenos de Peixe/isolamento & purificação , Lectinas/química , Lectinas Tipo C/química , Lectinas Tipo C/isolamento & purificação , Dados de Sequência Molecular , Peso Molecular , Alinhamento de Sequência
15.
Toxicon ; 74: 92-100, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23933196

RESUMO

Previously, a potent hemolytic toxin (Sp-CTx - 121 kDa) was isolated from Atlantic Scorpionfish Scorpaena plumieri venom. In the present work, we aimed to elucidate the action mechanisms involved in the hemolytic activity induced by this toxin, but to achieve our goal we faced the need to optimize its purification procedure in order to improve its activity and protein recovery. In this new method, Sp-CTx was purified to homogeneity through a combination of sequential ammonium sulfate precipitation and two chromatographic steps: hydrophobic interaction (Butyl HP) and anion exchange (Synchropak SAX 300). Orbitrap mass spectrometry analysis revealed that the amino acids sequences determined to Sp-CTx peptides are shared by other hemolytic toxins from fish venoms. The hemolytic activity of Sp-CTx upon rabbit erythrocytes was attenuated in the presence of osmotic protectants (polyethylene glycol polymers), and molecules larger than 6 nm in diameter inhibited cell lysis. This result strongly suggests that Sp-CTx may be a pore-forming protein, since it lacks phospholipase A2 activity. All these results contribute to the better understanding of Sp-CTx molecular/cellular actions in envenomation caused by S. plumieri. The results are also in agreement with previous reports of structural and functional similarities among piscine hemolytic toxins.


Assuntos
Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Venenos de Peixe/química , Perciformes , Perforina/química , Animais , Fenômenos Químicos , Eletroforese em Gel de Poliacrilamida , Eritrócitos/citologia , Hemólise/efeitos dos fármacos , Perforina/isolamento & purificação , Fosfolipases A2/metabolismo , Coelhos
16.
Invest. clín ; 49(3): 299-307, sept. 2008. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-518666

RESUMO

Entre diciembre 2006 y abril de 2007, se realizó un estudio descriptivo y prospectivo para analizar los perfiles clínicos, epidemiológicos y del tratamiento de los envenenamientos ocasionados por el pez escorpión Scorpaena plumieri en 36 individuos que se presentaron en la emergencia ambulatoria de Adícora, estado Falcón, Venezuela. Los porcentajes de envenenamientos no fueron estadísticamente significativos entre sexos ni grupos etarios (X2=0,03, p= 0,758; X2=0,06; p= 0,81, respectivamente). Los accidentes predominaron durante los meses festivos de febrero y abril (> 50%), lo que sugiere un patrón estacional, en horas vespertinas (83,33%) y a orillas de la playa (97,22%). Los pacientes asistieron a la emergencia ambulatoria entre 3 a 30 min después del accidente, con un tiempo promedio de 5,97 ± 4,39. Las heridas se presentaron de forma cortante, localizadas en su totalidad en la región plantar del pie, con longitudes entre 0,2 a 3 cm ( =1,04 ± 0,86) y profundidad entre 1 y 2 mm. Las manifestaciones clínicas observadas fueron: dolor intenso e irradiado (100%) [escala visual analógica VAS= : 9,39 ± 0,60], edema (27,78%) y eritema (22,22%). Un individuo presentó complicaciones sistémicas: hipotensión y desmayo. El tratamiento consistió de lidocaína (1%) infiltrada, anti-inflamatorio-analgésico sistémico vía oral (100 mg, cada 8 horas por 5 días) y antibióticoterapia per os (500 mg/2 veces al día/ 10 días), con evolución postratamiento satisfactoria entre 5 a 120 min ( = 30,11 ± 33,30) VAS de dolor promedio significativamente menor (0,72 ± 0,62; t= 52,2, p= 0,0001).


Assuntos
Humanos , Masculino , Feminino , Intoxicação/diagnóstico , Intoxicação/terapia , Venenos de Escorpião/efeitos adversos , Venenos de Escorpião/toxicidade , Resultado do Tratamento , Venezuela/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...